

Paludiculture

Wendelin Wichtmann

Partners in the Greifswald Mire Centre (GMC)

- Ernst-Moritz-Arndt-University
 Greifswald

 ERNST MORITZ ARNOT

 WISSEN
 - → Research
- Michael Succow Foundation
 - → Implementation, Nature protection

Succow Stiftung

- DUENE e.V.
 - → Consultancy, Implemementation

Interface
between
Science and
Politics refering
to mires and
peatlands

Peatlands and drainage

Wet peatland = peat acumulation

Drained peatland = peat degradation

(NABU 2012, verändert)

... the "devil's cycle" of peatland utilisation...

wet peatland wetting drainage

subsidence

Bavaria: 3 m loss since 1836

UK: 4 m loss since 1870

Excavated trensgressioin mire after abandonment of peat industry

N-losses from drained peatlands

Tab. 5.5: Stickstoffflüsse (in kg N ha⁻¹ a⁻¹) typischer Niedermoorstandorte des norddeutschen Tieflands (Daten nach: Trepel et al. 2000, Schleuß et al. 2002, Schrautzer 2004).

Vegetation type	sedges	wet meadow	ext. grasslar	nd int. grassland
Nutzuna	keine	1 Schnitt	Weide	3 Schnitte
Medium water table	-10 cm	-25 cm	-25 cm	-50 cm
Inputs				
Deposition	20	20	20	20
fertilzation	0	0	60	160
Mineralisation	30	100	100	300
Outputs				
harvest	0	80	60	200
Denitrifikation	20	30	50	80
N-leaching	5	10	15	20
Input sum	50	120	180	480
Output sum	25	120	125	300
N-Saldo (Einträge – Austräge)	25	0	55	180
Assessment	peat formation	peat losses	peat loss an	d eutrophication
				Holston & Trenel 2015

GHG-Emissions and water level

→ High water levels are needed!

GHG-Emissions and water level

→ Land use Change is needed!

New concept Paludiculture*

- Paludiculture is an innovative alternative to conventional drainage-based peatland agri- and silviculture
- Ideally the peatlands should be so wet that peat is conserved and peat accumulation is re-installed.
- Paludiculture uses that part of net primary production that is not necessary for peat formation (80-90% of NPP).

Rewetting and paludiculture

Establishment of a sink for nutrients and pollutants

- Reduction of environmental burden from the whole catchment
 - Greenhouse gases
 - Nutrients
- Function as "Wetland Buffer Zones" (kidneys in the landscape)
 - Sedimentation, reduction, sequestration
 - Export of nutrients by harvesting biomass
 - Elimination (denitrification)
 - Carbon sink

Reasons and potential for rewetting of degraded peatlands

- Reasons
 - Restoration of ecosytem services
 - Minimise environmental problems
- Potential
 - All degraded peatlands
 - Except:
 - infrastructure,
 - settlements,
 - lack of water,

Reasons and potential for implementation of paludiculture

- Reasons
 - Needs for productive land
 - Production of raw materials
- Potential
 - All degraded peatlands
 - Except:
 - infrastructure,
 - settlements,
 - areas with high biodiversity potential

Wetland plants as new crops to safe old peat!

DPPP – Database of <u>Potential</u> Paludiculture Plants (Abel et al. 2013)

- 1131 wetland plants registered
- Information about:
 - plant characteristics and morphology,
 - distribution and natural habitat,
 - modes of cultivation and propagation,
 - utilisation options

Paludiculture Potential of wetland plants

source: wikimedia

promising potential

perennials, above ground biomass is of main interest, market demand exists or a commercialisation is very likely in future, information how to manage these crops are available; e.g. *Phragmites australis* (Common Reed)

good potential

same like above but experiences in cultivating failed, research needed; e.g. lots of wild berries, medical plant; e.g. *Drosera* ssp. (Sundew)

limited potential

market demand was assumes to be limited (only traditionally used), or the peat preservation is not likely (annuals), → adjusting management to safeguard peat preservation?; e.g. *Oryza sativa* (Rice)

no potential

only gathering of wild populations possible, or could be cultivated in mixed cultures in small proportion , e.g. *Comarum palustre* (Purple Marshlocks)

Mecklenburg-Vorpommern Heating plant Malchin

- Landcare in rewetted peatlands
- Production of biomass for energy
- Produce heat for grid supply

Fotos: L. Lachmann

Typha Insulation Board

- Developed by typha technik (Werner Theuerkorn, Bavaria)
- Unique combination of insulation and construction characteristics
- Magnesite + leafs of *T. angustifolia*
- Promising market demand but! Biomass not available!
- Idea: Cultivation of biomass and production of boards within one company

Required Quality

Requirements on raw material:

- high quality biomass needed
- Leafs, not stems → Typha angustifolia (flowering less)
- High productivity (>15t ha⁻¹): dense stands → longer leaf sheats

Typha products from NAPORO

- Form bodies made from Typha fibres
 - 70 100% Typha fibres
 - Low weight
 - Extreme good technical characteristics
 - Alternative products are from plastics
 - 90% energy reduction compared with wood

Advantages of the new raw material from Cattail

- Typha is growing worldwide
- Grows under peat conserving conditions
- No competition with production of comestibles
- High sorption of CO₂ (more than forests)
- Purification of nutrient loaded waters
- No fertilization and no pest control necessary

Planting reed on drained peatland before rewetting...

Thatch – high quality demands

Insulation materials from common reed

Fotos: S. Wichman

Black Alder (Alnus glutinosa)

productivity: 3 – 10 t DM/ha*a → for furniture, fire wood

April 2011

Harvesting

Ecosystem services that can always be achieved by paludiculture

- Restauration of degraded peatlands
- Climate protection
 - Regional cooling effect (by evaotranspiration)
 - Reduction of GHG emisions
 - Prevention from peat fires
- Protection of waters
 - Nutrient retention
 - Export of nutrients with biomass
- Production of raw materials and substitution of fost fuels....and as well Perspectives for regional development, agriculture & tourism, ...

Further reading:

ltur – schaftung nasser Moore

Wendelin Wichtmann, Christian Schröder, Hans

Paludiculture – cultivation of wet peatl

Climate protection, biodiversity, regional ecol

- 1 Paludiculture as an inclusive solution ..
- 2 The limits of drainage based peatland utilisation
- 3 Production and utilisation of paludiculture biomass
- 4 Harvest and logistics
- 5 Ecosystem services provided by paludiculture
- 6 Economics of paludiculture
- 7 Legal and political aspects of paludiculture.
- 8 Social aspects of paludiculture implementation
- 9 Sustainability and implementation of paludiculture
- 10 Paludiculture in a global context.
- 11 The way out of the desert What needs to be done

Ecosystem services

What can always be achieved by paludiculture:

Restauration of degraded peatlands Climate protection

Regional cooling effect (by evaotranspiration)

Reduction of GHG emisions

Prevention from peat fires

Protection of waters

Nutrient retention

Export of nutrients with biomass

Production of raw materials and substitution of fossil

fuels....and as well Perspectives for regional

development, agriculture & tourism, ...

Wetlands and nutrients removal

Meta Analysis by Land et al. 2016

Land et al. Environ Evid (2016) 5:9 DOI 10.1186/s13750-016-0060-0

SYSTEMATIC REVIEW

How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review

Magnus Land^{1*}, Wilhelm Granéli^{2,3,5}, Anders Grimvall⁴, Carl Christian Hoffmann⁵, William J. Mitsch³, Karin S. Tonderski⁶ and Jos T. A. Verhoeven⁷

Abstract

Background: Eutrophication of aquatic environments is a major environmental problem in large parts of the world. In Europe, EU legislation (the Water Framework Directive and the Marine Strategy Framework Directive), international

Ln R (R=Load out/Load ir)

Sink

Source